Parameters#
Management of runtime parameters.
- gismo.parameters.ALPHA = 0.5#
Default value for damping factor. Controls the trade-off between closeness and centrality.
- gismo.parameters.DEFAULT_LANDMARKS_PARAMETERS = {'balance': 0.5, 'distortion': 1.0, 'max_k': 100, 'post': True, 'rank': <function <lambda>>, 'resolution': 0.7, 'stretch': 2.0, 'target_k': 1.0, 'wide': True, 'x_density': 1000, 'y_density': 1000}#
Dictionary of default runtime
Landmarks
parameters.
- gismo.parameters.DEFAULT_PARAMETERS = {'alpha': 0.5, 'distortion': 1.0, 'max_k': 100, 'memory': 0.0, 'n_iter': 4, 'offset': 1.0, 'post': True, 'resolution': 0.7, 'stretch': 2.0, 'target_k': 1.0, 'wide': True}#
Dictionary of default runtime
Gismo
parameters.
- gismo.parameters.DISTORTION = 1.0#
Default distortion. Controls how much of diteration relevance is mixed into the embedding for similarity computation.
- gismo.parameters.MAX_K = 100#
Default top population size for estimating k.
- gismo.parameters.MEMORY = 0.0#
Default memory value. Controls how much of previous computation is kept when performing a new diffusion.
- gismo.parameters.N_ITER = 4#
Default value for the number of round-trip diffusions to perform. Higher value means better precision but longer execution time.
- gismo.parameters.OFFSET = 1.0#
Default offset value. Controls how much of the initial fluid should be deduced from the relevance.
- gismo.parameters.POST = True#
Default post policy. If True, post function is applied on items and clusters.
- class gismo.parameters.Parameters(parameter_list=None, **kwargs)[source]#
Manages
Gismo
runtime parameters. When called, an instance will yield a dictionary of parameters. Is also used for other Gismo classes likeLandmarks
.- Parameters:
Examples
Use default parameters.
>>> p = Parameters() >>> p() {'alpha': 0.5, 'n_iter': 4, 'offset': 1.0, 'memory': 0.0, 'stretch': 2.0, 'resolution': 0.7, 'max_k': 100, 'target_k': 1.0, 'wide': True, 'post': True, 'distortion': 1.0}
Use default parameters with changed stretch.
>>> p = Parameters(stretch=1.7) >>> p()['stretch'] 1.7
Note that parameters that do not exist will be ignored and (a warning will be issued)
>>> p = Parameters(strech=1.7) >>> p() {'alpha': 0.5, 'n_iter': 4, 'offset': 1.0, 'memory': 0.0, 'stretch': 2.0, 'resolution': 0.7, 'max_k': 100, 'target_k': 1.0, 'wide': True, 'post': True, 'distortion': 1.0}
You can change the value of an attribute to alter the returned parameter.
>>> p.alpha = 0.85 >>> p()['alpha'] 0.85
You can also apply on-the-fly parameters by passing them when calling the instance.
>>> p(resolution=0.9)['resolution'] 0.9
Like for construction, parameters that do not exist are ignored and a warning is issued.
>>> p(resolutio = .9) {'alpha': 0.85, 'n_iter': 4, 'offset': 1.0, 'memory': 0.0, 'stretch': 2.0, 'resolution': 0.7, 'max_k': 100, 'target_k': 1.0, 'wide': True, 'post': True, 'distortion': 1.0}
Note the possibility to store a custom set of parameters if one uses
parameter_list
in construction.>>> p = Parameters(parameter_list={'a': 1.0, 'b': True}, a=1.5) >>> p() {'a': 1.5, 'b': True}
- gismo.parameters.RESOLUTION = 0.7#
Default resolution value. Defines how strict the merging of cluster is during recursive clustering.
- gismo.parameters.STRETCH = 2.0#
Default stretch value. When performing covering, defines the ratio between considered pages and selected covering pages.
- gismo.parameters.TARGET_K = 1.0#
Default threshold for estimating k.
- gismo.parameters.WIDE = True#
Default Covering behavior for covering. True for wide variant, false for core variant.