Mean-field computations#
- slotted_aloha_simulator.mean_field.dynamic_mean_field(p0=0.125, alpha=0.5, n=2, c_max=40, t_sim=10)[source]#
Dynamic mean fields values.
- Parameters:
- Returns:
Examples
>>> s, o, g, e = dynamic_mean_field() >>> s[:4, :4].round(4) array([[1.000e+00, 9.772e-01, 9.392e-01, 8.861e-01], [0.000e+00, 2.280e-02, 5.990e-02, 1.095e-01], [0.000e+00, 1.000e-04, 9.000e-04, 4.300e-03], [0.000e+00, 0.000e+00, 0.000e+00, 1.000e-04]]) >>> e[:4].round(4) array([0.875 , 0.8764, 0.8788, 0.8823]) >>> s, o, g, e = dynamic_mean_field(n=1000) >>> s[:4, :4].round(4) array([[1. , 0.8203, 0.5545, 0.2578], [0. , 0.1758, 0.3909, 0.5112], [0. , 0.0039, 0.0528, 0.2059], [0. , 0. , 0.0019, 0.0241]]) >>> e[:4].round(4) array([0., 0., 0., 0.])
- slotted_aloha_simulator.mean_field.mean_field(p0=0.125, alpha=0.5, n=2, c_max=40)[source]#
Asymptotic mean fields values.
- Parameters:
- Returns:
Examples
>>> s, o, g, e = mean_field() >>> s[:4].round(4) array([0.7808, 0.1712, 0.0375, 0.0082]) >>> round(e, 4) 0.8904 >>> s, o, g, e = mean_field(n=1000) >>> s[:4].round(4) array([0.0028, 0.0028, 0.0028, 0.0027]) >>> round(e, 4) 0.5014